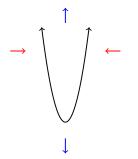


ALGEBRA


GRAPH TRANSFORMATIONS

TRANSFORMATION RULES

Let f(x) be the original function and let c > 0, k > 0 be real numbers.

FUNCTION	TRANSFORMATION	EXAMPLE $f(x) = x^2$
f(x) + k	Vertical shift up k units.	$f(x) + 5 = x^2 + 5$
f(x) - k	Vertical shift down k units.	$f(x) - 4 = x^2 - 4$
f(x+k)	Horizontal shift k units to the left.	$f(x+3) = (x+3)^2$
f(x-k)	Horizontal shift k units to the right.	$f(x-2) = (x-2)^2$
-f(x)	Reflection across the x -axis.	$-f(x) = -x^2$
$\int f(-x)$	Reflection across the y -axis.	$f(-x) = (-x)^2$
$c \cdot f(x), c > 1$	Vertical stretch by a factor of c units.	$2 \cdot f(x) = 2x^2$
$c \cdot f(x), 0 < c < 1$	Vertical shrink by a factor of c units.	$\frac{1}{3} \cdot f(x) = \frac{1}{3}x^2$

Notice that a **horizontal stretch** is the same as a **vertical shrink**, and a **horizontal shrink** is the same as a **vertical stretch**.

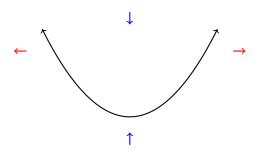
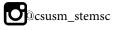
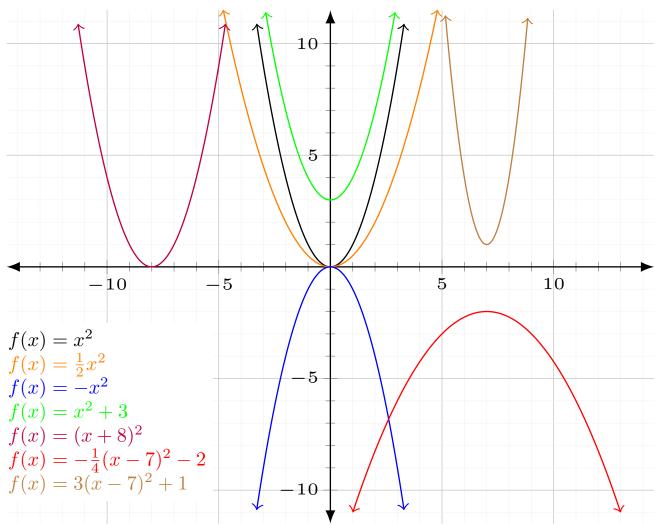
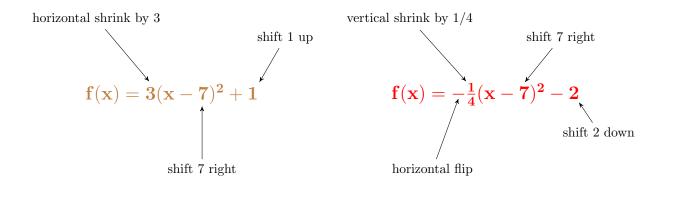



Figure 2: Vertical Shrink or Horizontal Stretch




California State University SAN MARCOS

ALGEBRA

GRAPH TRANSFORMATIONS

We can see that for the graphs of $f(x) = 3(x-7)^2 + 1$ and $f(x) = -\frac{1}{4}(x-7)^2 - 2$, we have

